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Abstract 

Persistent activity has been interpreted as the neural substrate underlying working memory for 

decades. However, recent studies suggested that these persistent activity findings might be an 

“artifact” of trial-averaging. In single-trial analyses, activity often occurs in sparse, synchronous 

bursts, both for single neurons and local networks. Alternative working memory models 

depending on the short-term synaptic plasticity and rhythmicity of discharges were examined and 

concluded that each of these models could explain a range of memory-guided behaviors which 

are hard to be explained with persistent activity models. Some attempts to reconcile the 

discrepancy of persistent activity and dynamic coding frameworks were introduced. In the end, I 

pointed out some directions which are worth considering in the future.  
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Working memory (WM) refers to the cognitive ability to store and manipulate 

information in mind, over a time span of seconds, for future use. It is a core component in a 

variety of high-level cognitive functions such as language, reasoning, problem solving, and 

abstract thought (Baddeley, 1992). WM itself has different components including encoding, 

maintenance, and retrieval of information. Of these components, the ability to maintain 

information in the absence of sensory input has always been an active topic of WM research.  

To understand the mechanism of WM maintenance, it is essential to know its neural basis. 

Many neurophysiological studies in nonhuman primates which identified single neuron activities 

(Fuster & Alexander, 1971; Kubota & Niki, 1971; Miller, Erickson, & Desimone, 1996), and 

neuroimaging studies (e.g., functional Magnetic Resonance Imaging (fMRI) and 

electroencephalography/magnetoencephalography (EEG/MEG)) of humans which recorded 

population activities from large cortical assemblies (Druzgal & D’Esposito, 2003; Leung, Gore, 

& Goldman-Rakic, 2002) have suggested that persistent activity during retention after a stimulus 

was no longer present is critical for maintaining WM information. Sreenivasan, Curtis, and 

D’Esposito (2014) gave a detailed definition of persistent neural activity: the above-baseline 

neural activity begins during the sample presentation and remains stable and elevated throughout 

the delay, and returns to baseline at the end of the trial. In this review, I consider persistent 

activity as a sustained and stationary pattern of neural activity. It is worth noting that persistent 

activity is not equivalent to perfectly stationary activity during the delay interval, for example, 

some researchers have indicated that content-specific delay activity could vary with the task 

relevance and exhibit a ramping activity in anticipation of the response (Constantinidis et al., 

2018; Stokes, 2015). This persistent activity model has been predominant for decades.  
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However, recent studies challenged this model. Studies have suggested that stable, 

persistent activity may not be necessary for WM maintenance. Instead, delay activity of content-

specific neurons is dynamic and evolved over time. A related class of attractor models also 

suggested that information is only expressed as spiking during short-lived attractor states 

(Lundqvist et al., 2016). The term ‘attractor' describes a system which consists of interacting 

units (e.g. neurons) evolves over time towards a stable state, given a fixed input (Wang, 2009). 

And between active states, information is held by selective synaptic changes in the recurrent 

connections (Mongillo, Barak, & Tsodyks, 2008). Accordingly, alternative frameworks/models 

have been proposed. Of these frameworks, I will mainly introduce two popular categories: 

dynamic coding framework, especially the activity-silent model, which is a representative of 

nonspiking models dependent on synaptic mechanisms instead of persistent spike generation; 

and rhythmic framework, which suggested that WM information is not persistent but can be 

conveyed by the frequency and phase of oscillatory activity. In the review, I take a position in 

favor of the alternative frameworks, because it seemed the persistent activity model does not 

represent the actual properties of neural activities when reevaluated with new analytic techniques, 

and the alternative frameworks get support across different anatomical levels, suggesting that 

they might be a more generic framework for WM.  

 

Persistent activity model and its problems 

The very first line of evidence which suggested the importance of persistent activity 

during WM delay can be traced back to the 1970s. Fuster and Alexander (1971) found that when 

monkeys performed a manual delayed-response task, neuronal activation in the prefrontal cortex 

(PFC) exhibited persistent, sustained firing during the delay period compared with that in the 
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intertrial interval. In another study, Kubota and Niki (1971) reported a similar finding during the 

delay period in the PFC when monkeys performed a delayed alternation task.  

Following these pioneer studies, many researchers have found similar persistent activity 

in the PFC during WM delays. For example, during the delay intervals of a delayed match-to-

sample task, activities of PFC neurons of two monkeys were recorded. When comparing the 

average firing rate across the delay intervals with the spontaneous firing rate before the start of 

the trial, Miller and colleagues (1996) found more than half of the PFC neurons showed 

significantly higher activity during the delay intervals. Furthermore, half of the neurons showed 

a flat delay activity profile when comparing the activity of the first and second half of the delay 

interval. More recent event-related fMRI studies of humans also suggested a sustained activity 

pattern during a retention interval. Leung, Gore, and Goldman-Rakic (2002) measured cortical 

activations with fMRI as human subjects maintained visuospatial memoranda over 18- and 24-

sec delay periods. As the single-unit studies in nonhuman primates suggested, they found 

sustained hemodynamic signal in the middle frontal gyrus throughout both delay periods. 

Persistent activity is not merely an epiphenomenon of working memory; it is closely 

related to working memory performance. The most extensively used paradigm to study visual 

working memory involves the oculomotor delayed response (ODR) task (Figure 1A). In a typical 

ODR task, monkeys are presented with a brief stimulus, and after a delay period (≥ 1s), they are 

required to make an eye movement to previously remembered location. Zhou et al. (2013) used 

the ODR task and found that prefrontal cortex in peripubertal monkeys generated robust 

persistent activity in the delay period of the task. Interestingly, this persistent activity was 

associated with behavioral performance: diminished sustained delay period activity tended to 
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result in errors, whereas neuronal activity in the delay period in the correct trials was robust and 

was not eliminated by a distracting stimulus.  

Another line of evidence linking behavioral performance and persistent activity came 

from studies which suggested the persistent activity is scaled with working memory load. That is, 

as the number of items that needs to be maintained increases, the level of delay period activity 

also increases until close to the limits of the individual’s short-term memory capacity (Curtis & 

Lee, 2010). For example, in a fMRI study, Druzgal and D’Esposito (2003) parametrically varied 

the mnemonic load of a face delayed recognition task to test the roles of the PFC and the 

fusiform face area (FFA) in face processing. Their results suggested that activity during the 

retention period increased parametrically with memory load in both the PFC and FFA. 

Altogether, this body of work provided a detailed picture of the relationship between persistent 

activity and working memory-related behavioral performance.  

The results I presented so far were concentrated in the PFC. The primary role of PFC is 

proposed to keep the internal representations of relevant sensory events online, and beyond that, 

PFC is also crucially responsible for integrating separate representations which all contingent on 

each other (Curtis & D’Esposito, 2003). Other models have emphasized more of a role for the 

PFC in manipulating information rather than storing information in WM. These models proposed 

that PFC provides the top-down control over more posterior areas where the sensory information 

is actually maintained (Curtis & D’Esposito, 2003; Postle, 2006). A recent lesion study, using 

monkeys with lateral PFC lesion and a delayed-match-to-sample WM task, provided some 

support to this view (Pasternak, Lui, & Spinelli, 2015). The researchers found that lateral PFC 

lesions caused deficits in monkeys’ ability to compare current and remembered directions of two 

moving stimuli, separated by a delay. These deficits were independent of motion coherences of 
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stimuli signaling motion direction, but were most pronounced when the task required rapid 

reallocation of spatial attention, i.e., the comparison stimulus appeared in an unpredictable visual 

field location compared to remembered stimulus. Thus, lateral PFC’s role is more likely to be 

attending and accessing the preserved motion signals rather than their storages. Whether the role 

of PFC is to preserve sensory information per se or reflects control processes such as monitoring 

and selection, it is no doubt the PFC has a predominant role in WM maintenance. In fact, the 

PFC has long been thought to be the most important substrate for WM (Curtis & D’Esposito, 

2003).  

However, persistent activity is not exclusively found in the PFC during working memory 

maintenance. Persistent activity has also been reported in the parietal cortex, different visual 

areas of the inferotemporal cortex, early sensory cortices including primary visual cortex and 

somatosensory cortex (Leavitt, Mendoza-Halliday, & Martinez-Trujillo, 2017), as well as 

subcortical regions including the basal ganglia and thalamus (Riley & Constantinidis, 2016). For 

instance, Woloszyn and Sheinberg (2009) reported robust delay activity in the inferior temporal 

cortex of monkeys performing a delayed match-to-sample task, and there remained a small 

fraction of neurons that represented WM information even in the presence of the distracting 

stimulus. But, even though persistent activity seemed prevalent across brain regions, the number 

of studies reporting sustained activity in areas of the PFC exceeds that of any other region 

(Leavitt, Mendoza-Halliday, & Martinez-Trujillo, 2017). 

There are several possible, and not mutually exclusive, models to explain how persistent 

activity is generated and controls WM (Curtis & Lee, 2010). The most accepted model proposed 

that persistent activity emerges from reverberations in a recurrent network (Compte, 2006; Wang, 

2001). More specifically, persistent activity might be the result of mutual excitation between 
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neurons that would be self-sustained via dense reciprocal synaptic connections, the activity 

would then be self-maintained for a much longer time than the biophysical time constants (tens 

of milliseconds) of fast electrical signals in neurons and at synpases.  This reverberation can be 

observed in local neural circuit such as fontal lobes. For example, Goldman-Rakic (1995) 

proposed a columnarly organized cortical network model for the PFC, in which persistent 

activity arises from reverberatory excitation, and stimulus selectivity is formed by recurrent 

inhibition. This reciprocal excitation can also be observed within a network of areas including 

both cortical and subcortical areas, such as the cortico-striato-thalamo-cortical loop (Hikosaka, 

Takikawa, & Kawagoe, 2000; Wang, 2001;Watanabe & Funahashi, 2004). Consistent with this 

argument, thalamic and caudate neurons showed eleaveted persistent activity whereas ouptut 

neurons from basal ganglia showed sustained inibition during the delay period of a WM task 

(Wang, 2001). Another model proposed that persistent activity relies on intracellular  signals. It 

suggested that specific membrane currents or cumulative changes in the concentration of 

intracellular calcium might account for persistent activity in individual cortical neurons (Curtis & 

Lee, 2010).  

Even though the persistent activity model is clearly important and has been successful in 

the field of working memory in past decades, some recent results have complicated this view. 

Lundqvist, Herman, and Miller (2018) pointed out this model’s most significant shortcomings: 1) 

it is not energy-saving and is labile. This model assumes the mnemonic information is stored via 

persistent activity which might be metabolically expensive, and this pattern is not resistant to 

distractors or lacks the compatibility with storage of multiple items, because the memory tends to 

be lost when the activity is disrupted; 2) many early persistent activity findings used the so-

called ODR task, which might confound delay persistent spiking with motor planning activity; 3) 
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importantly, classical findings of persistent activity were mainly based on averaged results of 

many individual trials, and thus might not reflect the real property of individual neurons. The 

following paragraphs will focus on the second and third points to explain why the persistent 

activity account might be shaken when examined with new analytical techniques and 

observations. 

The evidence researchers used to argue for the persistent activity usually involved the 

ODR task. However, recent researchers (Leavitt, Mendoza-Halliday, & Martinez-Trujillo, 2017; 

Lundqvist, Herman, & Miller, 2018) suggested that this paradigm had an issue because the 

action planning activity was also involved during the delay period in addition to the activity of 

interest for WM maintenance. For example, in a recent study, Markowitz, Curtis, and Pesaran 

(2015) used the ODR task in combination with the large-scale recording from neurons across the 

lateral PFC of macaque monkeys and found that WM is composed of three anatomically specific 

modes of persistent activity. The first two modes encode early and late forms of memory storage, 

and the third encodes response preparation. Information encoded in the response preparation 

directly influences the timing and accuracy of planned behavior. They also used a database of 

recordings from chronically implanted movable electrode arrays to map the spatial organization 

of persistently active neurons, and the result showed that response network was concentrated in 

anterior PFC, proximal to area 46. This result suggested that prefrontal neurons which were 

believed only engaged in representing stimulus properties might represent motor preparation 

instead. 

More carefully controlled experiments have been conducted to remove the confounding 

premotor signals, these experiments tried not to specify motor response until after the delay. 

Classical examples included delayed match-to-sample task, which only requires subjects to make 
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a response when the probe stimulus reappears at previously remembered cued location (Figure 

1B); and its variant, match-nonmatch task, which requires subjects to saccade to either a green or 

a blue response target depending on whether the probe target matches the previously presented 

stimulus or not (Figure 1C). It has been shown that with these modified tasks delay activity is 

often less robust and less sustained (Lundqvist, Herman, & Miller, 2018; Shafi, Zhou, Quintana, 

Chow, Fuster, & Bodner, 2007).  

The most critical and controversial argument Lundqvist, Herman, and Miller (2018) 

made might be that they suggested persistent activity is an artifact of averaging across trials. 

When spiking was analyzed on individual trials, it actually occurred in sparse, synchronous 

bursts, both for single neurons and local networks. The rationale was when activity was averaged 

with regard to external events, the brain’s internal dynamics, which were not time-locked to 

external events, were ignored. Thus, averaging produced the artifact of persistent activity even 

though the real activity was sparse.  

To support this argument, Lundqvist et al. (2016) developed a novel method to quantify 

the temporal structure of gamma band (45-100Hz) and beta band (20-35Hz) activity at the local 

network level on individual trials during working memory. The gamma band was chosen because 

of its close association with spiking carrying information about memory items (Lundqvist, 

Herman, & Lansner, 2011). The authors trained two monkeys to maintain multiple colored 

squares (two or three items, each in unique location) over a short period of time, then, asked the 

monkeys to make a saccade to the testing squares when they changed colors relative to the 

encoding squares at the same location. They suggested that when holding WM information in 

mind, ensembles of neurons in the prefrontal cortex are active in brief bursts and WM 

information is stored in synaptic changes between bursts. For burst extraction, they used two 
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comparable methods (i.e., band-pass filtering techniques and multi-taper analysis) to estimate 

temporal profiles of the local field potentials (LFPs) spectral contents within the gamma and beta 

bands. To quantify the gamma or beta burst, they defined a burst as an increase in power of two 

standard deviations above the trial mean spectral power for that particular frequency, and with 

the duration of lasting at least three cycles. Having the burst intervals extracted for gamma 

oscillations from each trial, they found these gamma waves occurred sporadically (i.e. the 

occurrence of gamma burst was not periodic, instead, it was widely scattered in frequency 

because it reflected a transient attractor state). They also proposed that each ensemble of neurons 

encoded a specific item and produced a different burst of gamma waves. Beta oscillation also 

occurred in brief, irregular bursts but reflected a default state, as suggested by the anti-correlated 

relationship between gamma and beta bursts. van Ede, Quinn, Woolrich, and Nobre (2018) 

conceptualized this burst view: the underlying pulses might be rhythmic, but there exists a 

threshold to determine whether any given pulse will result in a measurable burst-event. If single 

pulses cross the threshold, isolated bursts occur. However, when this activity was averaged 

across trials, it appeared as a familiar sustained and long-lasting gamma activity (Figure 2), but it 

might be an artifact of averaging across trials. 

In a more recent study, Lundqvist and colleagues (2018) reanalyzed a multiple-electrode 

dataset from a previously published experiment (Warden & Miller, 2007). In that experiment, 

two monkeys were trained to determine whether a test sequence of two objects matched a sample 

sequence presented earlier. This task, as with other delayed match-to-sample tasks, carefully 

controlled the motor planning activity. When the authors reanalyzed the LFPs recorded in 

prefrontal cortex using single-trial analyses (Lundqvist et al., 2016), they found brief narrow-
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band oscillatory bursts of varying central frequency on single trials, while previous results 

reported persistent activity using the trial-averaging method.  

This transient activity model has some advantages over persistent activity models.  

Because it suggested that WM items are only expressed as spiking during active states, between 

active states, items are maintained by short-term synaptic facilitation mediated by increased 

residual calcium levels at the presynaptic terminals of the neurons that code items (Mongillo, 

Barak, & Tsodyks, 2008). Spikes (in the form of brief bouts) can induce temporary (< 1s) 

changes in synaptic weights for memory retention (Constantinidis et al., 2018; Miller, Lundqvist, 

& Bastos, 2018), and memories stored in synaptic states can be transformed into spiking activity 

again as a result of global reactivating input (like attention) to the network or through intrinsic 

network dynamics (Mongillo, Barak, & Tsodyks, 2008). Thus, spiking and short-term synaptic 

plasticity work together to maintain WM information.  

This hybrid mechanism is supposed to be metabolically less expensive, because it does 

not require continuous generation of spikes to retain memories. During the silent period, the 

neural circuit responsible for holding information is decoupled from other brain regions because 

no spike is discharged. Such a decoupling might be the underlying mechanism of modular brain 

systems, in which different sensory modalities are encoded in different modules (Fusi, 2008). 

This synaptic weight theory can better handle multiple items because memories are stored in 

synaptic states, thus there are no overlapping neural activities for different memories. Synaptic 

weights are also more resistant to interference. Because as less time spent in active attractor 

states, working memories are less likely to be disrupted by new sensory input (Miller, Lundqvist, 

& Bastos, 2018).  
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To sum up, persistent spiking has been thought as the neural substrate of working 

memory maintenance, and many studies from single neuron/LFP recording, and neuroimaging 

methods have provided evidence for this claim. However, Lundqvist, Herman, and Miller (2018) 

pointed out that virtually all of the evidence supporting the persistent spiking model (at least in 

single neuron and LFP recordings) came from studies that averaged spiking across time and trials. 

It is argued that when the trials were analyzed individually, activity actually occurred 

sporadically. Even though the activity might occur in sparse transient bursts in single neurons as 

well as local networks (e.g., multiple simultaneously recorded neurons and LFPs), some might 

argue it could still be persistent on a more global scale (i.e., combine enough neurons across 

highly distributed networks), because transient local activity in different parts of a larger network 

could be counterbalanced to make the global activity persistent (Lunqvist, Herman, & Miller, 

2018). Nevertheless, recent neuroimaging recordings of global activity from EEG and fMRI 

were not consistent with this argument. In the next section, I will present evidence to 

demonstrate that activity is also not persistent on the level of populations of neurons.  

 

Dynamic coding in working memory 

In the strict model of persistent activity, WM-related activity should keep constant and 

the information encoded in a given state at time t may be encoded in the same state at time t+1 

(Sreenivasan, Curtis, & D’Esposito, 2014). However, many recent findings suggested this is not 

the case. Instead, WM-related activity evolves over time; that is, the activity containing 

information drifts over the course of the trial, but stable representation can still be preserved via 

this dynamic trajectory through the activity of the neurons in the population (Sreenivasan, Curtis, 

& D’Esposito, 2014).  
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Changes in a population code can be evaluated by training a classifier on population 

spiking. If the population code is persistent, it should not matter whether a classifier is trained on 

one time point and tested on another, however, if it is dynamic, a classifier trained on one time 

point will probably only perform well at the same or close time points (Spaak, Watanabe, 

Funahashi, & Stokes, 2017; Stokes, Kusunoki, Sigala, Nili, Gaffan, & Duncan, 2013). Using this 

temporal generalization logic, accumulating evidence suggests an important role of dynamic 

population coding in the maintenance of working memory information in PFC (Meyers, 

Freedman, Kreiman, Miller, & Poggio, 2008; Spaak, Watanabe, Funahashi, & Stokes, 2017; 

Stokes, Kusunoki, Sigala, Nili, Gaffan, & Duncan, 2013).  

For example, Spaak, Watanabe, Funahashi, and Stokes (2017) applied multivariate 

pattern analysis to explore the population dynamics in lateral PFC in macaques during three 

variants of the classic ODR task (i.e., the standard ODR task and its variant with varied delays, 

and a dual task which required monkeys to perform the ODR task and an attention task 

simultaneously). They observed significant dynamic population coding during both the cue 

period and the early part of the subsequent maintenance period in the ODR tasks. Furthermore, 

they used simulated neural populations based on the observed dataset to study the relative 

contributions of two factors in driving the dynamic coding: different subpopulations of neurons 

are involved at different time points, and location selectivity in individual neurons changed over 

time. These results indicated that it is likely that a combination of two components was 

contributing to the observed dynamic population code. 

Studies above demonstrated that without intervening input, population code can change 

over the memory delay, which is consistent with findings at local networks discussed in the 

previous section. Another line of evidence further demonstrated that neural coding is not fixed, 
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but depends on the exact context of the current task. Even though the persistent activity model 

suggests that memory performance will be compromised when activity does not persist during 

retention (Curtis & Lee, 2010), more and more studies using paradigms which required subjects 

to perform two tasks together or hold multiple objects showed that persistent activity is not 

necessary for WM-guided behavior. For example, in a study, Warden and Miller (2007) trained 

monkeys to memorize a sequence of two objects across a short delay while recording activity of 

neurons from the lateral PFC. They found that neurons encoding the first stimulus were 

suppressed during the presentation of the second stimulus; however, after the offset of the second 

stimulus, the suppressed activity for the first stimulus was ‘reactivated’.  

Similar findings were also observed in human subjects with fMRI and EEG studies 

(LaRocque, Lewis-Peacock, Drysdale, Oberauer, & Postle, 2013; Lewis-Peacock, Drysdale, 

Oberauer, & Postle, 2012).  In an fMRI study of multistep delayed-recognition task, Lewis-

Peacock and colleagues (2012) presented two sample stimuli concurrently. After the offset of the 

stimuli and an initial delay period, a retro-cue was presented, indicating which sample was 

relevant for the first probe, followed by a second delay and the initial recognition probe. After 

the first probe, a second retro-cue, followed by the third delay, appeared to indicate whether the 

same item (repeat trials) or the previously uncued item (switch trials) would be tested in the 

following probe. Thus, during the second delay (before the first probe), subjects had to keep both 

items in memory, but the third delay would only require the retention of the cued item because 

subjects knew the uncued item would never be tested. Using decoding algorithms, the authors 

found that classifier evidence for both stimuli was apparent at trial onset and remained until the 

onset of the first retro-cue. After the first retro-cue, classifier evidence for the uncued item 

dropped precipitously to the baseline. However, if the second cue was a switch cue (i.e., 
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previously uncued item would be probed), classifier evidence for previously uncued item was 

reinstated, while evidence for previously cued item dropped to the baseline. To summarize, these 

findings suggested that persistent delay activity is not necessary for the process of maintaining 

WM information. Instead, neural coding exhibits context-dependent responses. 

Stokes (2015) further proposed that unattended items do not seem to have a 

corresponding activity state; instead, they remained in an activity-silent state (i.e., hidden state), 

even though they were still preserved in memory (Figure 3). However, once attention is directed 

back to them, the activity state becomes apparent again. This hidden neural state was usually 

undetected (e.g., classifier evidence for uncued items dropped to chance levels) because 

recording techniques typically measure activity states only (Stokes, 2015). Nevertheless, Wolff, 

Ding, Myers, and Stokes (2015) developed a novel way to reveal this hidden state of memory. 

They employed an analogy of sonar system to describe this method: underwater objects are 

invisible to sailors, but when a ship uses sonar to emit pings of sound, they can “see” the objects 

when they receive the sound waves reflected back. Particularly, in the hidden state memory 

example, if working memories are hiding in an active-silent network of altered synaptic weights, 

any input (functions as sonar sound) will trigger a unique pattern that depends on the physical 

properties of input stimulus and the initial state of synaptic weights (underwater objects). Thus, 

when the input stimulus remains unchanged (sonar sound is fixed), if we can still record neural 

activity changes, this change should be attributed to the change of hidden state pattern. Critically, 

they used high-contrast visual stimulus as the ping to the brain. The ping could be three big 

circles shown side by side with plain white or filled with black-and-white dartboards. The 

precise feature of a ping probably is not important, as long as it is a high-contrast visual stimulus 

which can target the memory network properly and is neutral to the information being 
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remembered (Rademaker & Serences, 2017). It was believed that this method can reveal the 

actual contents of WM (Wolff, Jochim, Akyurek, & Stokes, 2017), rather than the focus of 

attention (as revealed by conventional decoding approach without this perturbation approach), 

from EEG signal as a function of time.  

This functional perturbation approach combined with multivariate pattern analysis was 

applied to a working memory task to characterize the functional dynamics of the hidden state for 

WM (Wolff, Jochim, Akyurek, & Stokes, 2017). In their experiment, two memory items were 

presented, and participants were instructed to remember both items. Both items were ultimately 

tested in each trial. However, their priorities were manipulated by blocking the order in which 

items would be probed early. Decoding results showed that both items were decodable 

immediately following memory items onset, even though the prioritized item (tested early) was 

more prominent. However, decoding of the deprioritized item quickly dropped to chance level 

after item presentation, while the prioritized showed significant decoding until the end of the 

epoch. This result was consistent with previous evidence which showed only cued item could be 

decoded. However, what makes this method unique is when a ping was presented during the 

delay period, both prioritized and deprioritized items became decodable again, which suggested 

that WM for a temporarily deprioritized item was stored in a hidden state and could be revealed 

by functional perturbation approach. 

At a cognitive level, this activity-silent model resonates well with the state-based models 

of working memory, especially Oberauer’s three-embedded-components model (Oberauer, 2002, 

2009). This model, which is an extension of Cowan’s embedded model (Cowan, 1995), consists 

of three components: the activated part of long-term memory (LTM), the region of direct access, 

and the focus of attention. The activated part of LTM keeps all information that could be relevant 
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to the task. The region of direct access contains a subset of the activated LTM, and the focus of 

attention is a selection device which might hold only one item or chunk at a time. According to 

the activity-silent model, cued or prioritized items are maintained in an active state, which might 

also be kept in the focus of attention. However, uncued or deprioritized items, which are 

preserved in a hidden state, might be temporarily pushed out of the focus of attention, but they 

are not lost because they might still be in the region of direct access, and can be restored by 

retro-cues or by transcranial magnetic stimulation (TMS) pulses which can also function as a 

sonar to ping the brain (Rose et al., 2016).  

In previous examples, even though memory item might enter a deprioritized state which 

dissipated related neural activity, subjects were still consciously aware of the input. However, 

recent studies had found even when subjects indicated not having seen the memory target, they 

could still recall the target much better than chance (Soto, Mantyla, & Silvanto, 2011; 

Trubutschek et al., 2017), and interestingly, the activity-silent mechanism also constitute a 

plausible neural mechanism for this non-conscious working memory (Trubutschek et al., 2017). 

In a spatial delayed-response task combined with MEG, Trubutscheck et al. (2017) assessed 

working memory performance under varying levels of subjective visibility. Their finding 

suggested that an unseen but correct response stimulus that failed to cross the threshold for 

sustained activity and subjective visibility could still possess enough activity in high-level 

cortical circuits to modify short-term synaptic weights, thus could be maintained in an activity-

silent state. 

The activity-silent state could have many possible neurobiological bases, the common 

theme of these possible mechanisms is that they do not assume an unbroken chain of sustained 

spiking (Myers, Stokes, & Nobre, 2017). As discussed previously for single neurons and local 
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neural circuits, the most prominent candidate mechanism for activity-silent state on global scale 

is short-term synaptic plasticity (Mongillo, Barak, & Tsodyks, 2008). Short-term synaptic 

change is not only a theoretical framework, direct physiological evidence for this framework also 

exists. For example, Fujisawa and colleagues (2008) examined large-scale recording of neural 

activity in the medial prefrontal cortex of the rat during a working memory task at timescales of 

milliseconds and seconds. Their observations indicated that for a given interneuron, increased 

activity from one presynaptic neuron can reduce or increase that neuron’s control of the 

interneuron, this in vivo evidence was consistent with synaptic facilitation and depression, which 

argued in favor of synaptic mechanisms of working memory.  

Even though converging evidence from univarate and multivariate techniques have 

supported the activity-silent model, there are some concerns whether this hidden state really 

exists. Most evidence argued in favor of activity-silent state are based on null effects, and it 

remains a possibility that researchers just missed some content-related activities. For example, 

Watanabe and Funahashi (2014) trained monkeys to attend to a specific spatial location when 

performing an ODR task, and found that during this dual-task period, WM-specific delay activity 

in prefrontal neurons was attenuated but still noticeable, even under the presence of the most 

difficult attention task conditions, suggesting that memory information was not completely lost 

during delay period. In the study of Lundqvist et al. (2016), even though researchers reported 

that beta and gamma activities occurred in brief and irregular bursts during WM delay on single-

trial level, they particularly only chose those activities with high spectral powers as bursts. 

Setting a threshold might be able to help to eliminate noisy burst-like oscillatory dynamics, but it 

might also ignore those persistent signals with lower power. Thus, depending on how they set the 

thresholds, the results might suggest opposite conclusions. Another line of evidence questioned 
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the usefulness of activity-silent WM storage. In a simulation study, Schneegans and Bays (2017) 

implemented a neural model of working memory simply based on the principle of sustained 

activity in neural populations. More specifically, they formulated this neural model in a form of 

recurrent neural network that generates continuous time courses of neural activity patterns. With 

this sustained neural activity model, they could reproduce both behavioral and fMRI results of a 

spatial recall task with retro-cues, which were previously taken as evidence for activity-silent 

working memory state (Sprague, Ester, & Serences, 2016).  

To sum up, even though previous studies suggested the neural activity persist during the 

delay period of WM, more recent studies in combination with decoding techniques indicated that 

WM-related activity actually evolves over time. Importantly, the persistent activity is not 

necessary for storing memory information as studies suggested that a memory item can be stored 

in an activity-silent state. Even though there are some debates on whether this activity-silent 

memory really exists (Xu, 2017), more and more evidence seems to support its existence (Rose 

et al., 2016; Sprague, Ester, & Serences, 2016; Wolff, Jochim, Akyurek, & Stokes, 2017). As 

indicated by the activity-silent model, working memory maintenance does not solely depend on 

sustained neural firing. Instead, persistent neural activity only reflects sustained attention to the 

currently task-relevant item, whereas other items can be held in an activity-silent state. However, 

context changes (e.g., retro-cues) can refresh the synaptic weights and reactive dormant 

representations. Because of the feature that target-related activities can disappear and reappear 

intermittently, this model also suggests a possibility that target information might be maintained 

in a rhythmic manner, i.e., they wax and wane throughout the delay. In the next section, I will 

provide evidence to show how rhythmic activity has been implicated in WM.  
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Oscillatory models of working memory 

The first suggestion that observed delay activity involved in WM actually has an 

oscillatory character came from intracranial recordings of the local field potential (Raghavachari 

et al., 2001). In this study, human subjects were presented with lists of one to four consonants 

sequentially on the screen, and after a delay period, they had to respond whether a probe item 

was on the list (i.e., Sternberg task). The researchers found the amplitude of theta (4-8 Hz) 

oscillations at some cortical and subcortical sites increased at the beginning of the trial, was 

sustained through the entire trial including the delay, and decreased at the end.  However, as 

described in the previous studies (Lunqvist, Rose, Herman, Brincat, Buschman, & Miller, 2016; 

Lundqvist, Herman, & Miller, 2018), this elevated and sustained theta rhythm was a result of 

trial-averaged spectrograms. When analyzed with single-trial spectrograms, the theta oscillations 

probably would not be sustained, but occur in brief bursts. Brief bursts with interleaved periods 

of silence might be a way to combine the robustness of persistent activity with more flexible 

computations, in other words, the periods of silence might be opportunities for the network to 

evolve and incorporate new information (Lundqvist, Herman, & Miller, 2018).  

Several lines of neuronal oscillation studies came from the examination of the firing of 

individual neurons and LFPs in primates. For example, in one study (Siegel, Warden, & Miller, 

2009) monkeys were required to maintain both the identity and the order of two objects over a 

delay of 1 s, while their LFPs and spikes (multi-unit activity) were both recorded from electrodes 

implanted in the lateral PFC. During the delay, time-frequency analysis of the LFPs revealed 

population activity at around 32 Hz. Importantly, there was also a prefrontal spike-LFP 

synchronization at 32 Hz, and spikes at particular phases relative to the ongoing population 

oscillations carried the most information about the remembered objects. Moreover, according to 
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the order of stimulus presentation, optimal encoding of the first presented object was 

significantly earlier in the 32 Hz cycle than that for the second object.  

More studies, however, were conducted using EEG and MEG in human subjects. For 

example, Jensen and colleagues (2002) measured scalp EEG using a Sternberg task which 

required human subjects to remember a list of consonants. They manipulated working memory 

load in the task by varying the memory set length. Their results revealed dominant oscillations in 

the 9-12 Hz alpha band during the interval between the onset of the memory list and the onset of 

the probe. To determine whether the alpha activity was affected by memory load, they compared 

power spectra concerning different memory loads, and the results indicated the alpha band power 

increased with memory load in both posterior and bilateral brain regions during the last 2s of the 

2800 ms retention interval. In another MEG study, Jensen and Tesche (2002) recorded 

neuromagnetic responses while human subjects performing a similar Sternberg task as Jensen 

and colleagues (2002) implemented. Their results also revealed a spectral peak in the 10-12 Hz 

alpha band over the back of the head, and a 7-8.5 Hz peak in the theta band over frontal areas 

which was not discovered in the study conducted by Jensen and colleagues (2002). The frontal 

theta activity could also increase parametrically with memory load during retention interval.  

Altogether, these studies indicated that both the magnitude and the phase of oscillations 

could be modulated by WM information. This modulation was reported at different frequencies, 

including theta, alpha (8-13 Hz), and gamma (30-200 Hz) (Roux & Uhlhaas, 2014), and at 

different anatomical scales, ranging from single neurons/small neuronal populations to large 

cortical assemblies from the surface of the scalp and brain networks using EEG/MEG recordings 

(Duzel, Penny, & Burgess, 2010).  
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In general, it has been argued that neuronal oscillations could provide a temporal 

reference frame and reflect a feedback mechanism to control cortical excitability and spike 

timing to influence information held in working memory (Helfrich & Knight, 2016). More 

specifically, theta activity is mainly involved in the PFC as well as the hippocampal-entorhinal 

system (Roux & Uhlhaas, 2014). It has been reported that theta activity is increased during the 

encoding and retention of WM tasks and possibly functions as a gating mechanism controlling 

relevant information and suppressing irrelevant information (Raghavachari et al., 2004; Sauseng, 

Griesmayr, Freunberger, & Klimesch, 2010). Theta rhythm is also thought to be important for 

phase coding of information in WM, and higher frequencies like gamma cycle can be nested into 

theta cycle to enable the reactivation of the memory representations (Lisman & Idiart, 1995). 

Gamma frequency, which represents a generic mechanism for the representation of individual 

WM items, helps to integrate various features of an object by integrating activities from different 

neuronal populations in cortical and subcortical structures (Hakim & Vogel, 2018; Roux & 

Uhlhaas, 2014). Alpha frequency, which is most frequently observed in sensory regions and the 

thalamus (Roux & Uhlhaas, 2014), on the other hand, might not be directly relevant for WM 

information per se, but reflects the orienting of attention (Foster, Sutterer, Serences, Vogel, & 

Awh, 2017; Wolff, Jochim, Akyurek, & Stokes, 2017) and protects WM maintenance from 

irrelevant information or distractors (Bonnefond & Jensen, 2012). For example, WM studies 

have suggested that decreased alpha activity could facilitate processing in task-relevant brain 

regions, whereas increased alpha activity may suppress distracting information in task-irrelevant 

regions (Haegens, Nacher, Luna, Romo, & Jensen, 2011). The gamma and alpha band responses 

are also considered internally generated because in both cases rhythmic responses can sustain as 
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long as the functionally relevant epoch lasts, even when no temporal structure in the stimulus is 

presented (Herbst & Landau, 2016). 

Many findings have suggested that distinct spectral signatures do not occur in isolation, 

but are functionally coupled (Helfrich & Knight, 2016). For example, slower and faster rhythms 

can interact by cross-frequency coupling. The most popular coupling might be phase–amplitude 

cross-frequency coupling, in which the phase of lower frequency oscillations correlates with the 

amplitude of higher frequencies (Turi, Alekseichuk, & Paulus, 2018). One intriguing model 

proposed by Lisman and Idiart (1995) suggested that theta-gamma phase-amplitude coupling 

provides the necessary neural substrate for limited working memory capacity. According to this 

model, an individual memory item is represented by each cycle in the gamma rhythm. Because 

multiple gamma cycles can be entrained within the theta cycle, various items represented by 

multiple gamma cycles can be activated every theta cycle (Figure 4). As suggested by this model, 

the capacity limit of working memory emerges because there is only a certain amount of phase 

space available within a theta cycle to keep multiple items active and separated (Eriksson, Vogel, 

Lansner, Bergstrom, & Nyberg, 2015), and when storage of more items is attempted, the 

representations might be overlapped in phase space, which could cause memory errors (Hakim & 

Vogel, 2018).  

The most compelling evidence to support this theta-gamma cross-frequency coupling 

model came from a study conducted by Bahramisharif and colleagues (2018). In this study, the 

authors recorded activities from epilepsy patients who had electrocorticography implanted on the 

surface of their brain. They presented those patients with serial sequences of three random letters 

which they had to remember during the delay. By examining neural activities at “letter-selective” 

cortical sites, they found that each of the three letters was encoded as bursts of gamma activity at 
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distinct phases of the theta/alpha band (7-13 Hz). Additionally, the position of each letter in the 

phase space was dependent upon the presented letter position in the letter list. Thus, the authors 

provided clear evidence that individual items can be stored in gamma rhythm at distinct periods 

of the phase of the theta cycle.  

One interesting inference can be made from this model is if the theta frequency is lower, 

the phase of theta cycle will be more prolonged, then it might hold more gamma subcycles, and 

thus increase WM capacity. This assumption gained support from a study that investigated how 

working memory load influenced phase coupling (Axmacher, Henseler, Jensen, Weinreich, Elger, 

& Fell, 2010). The authors found as the number of items (one, two, or four trial-unique novel 

faces) held in mind increased, the gamma frequency was modulated by lower frequency theta 

band activity in the human hippocampus. This model has great potential in application; for 

example, WM capacity could be increased by modulating theta frequency. In an exciting new 

study, Wolinski and colleagues (2018) used transcranial alternating current stimulation (tACS) to 

modulate and entrain healthy participants’ ongoing network oscillations in the theta frequency 

range while the volunteers performed a visuospatial working memory task. They found that 

when tACS at 4 Hz was used to entrain ongoing theta oscillation, participants’ working memory 

capacity was enhanced. However, faster tACS at 7 Hz reduced participants’ working memory 

capacity. In another tACS study of spatial working memory, researchers (Alekseichuk, Turi, de 

Lara, Antal, & Paulus, 2016) also found that co-stimulation of theta and gamma waves in the 

prefrontal cortex boosted working memory performance only when gamma rhythms were phase 

locked to the peaks of theta rhythms. Interestingly, the optimal high gamma frequencies 

manifested in the 80 to 100 Hz frequency range, when the theta cycle was at 6 Hz.  
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Another line of evidence to support this rhythmic property of WM maintenance can be 

inferred from the relationship between internal attention and working memory. In the previous 

section, I introduced the three-embedded-components model of WM, which assumes the most 

task-relevant memory item is maintained in the focus of attention. In the time-based resource-

sharing model of WM (Barrouillet & Camos, 2012), it further emphasizes the importance of 

attention in the two main functions of WM: the temporary storage and the processing of 

information. This model proposed that the maintenance of memory traces depends on their 

activation through attentional focusing and that working memory will decay as soon as the focus 

of attention is switched away. Because attention is vital to WM maintenance, it is natural to 

assume that if the attention itself is a rhythmic process, then it is less likely the WM would be 

maintained in a stable neuronal coding.  

In fact, many behavioral studies have provided evidence for rhythmic sampling during 

spatial attention (Fiebelkorn, Saalmann, & Kastner, 2013; Fiebelkorn, Pinsk, & Kastner, 2018; 

Landau & Fries, 2012; Song, Meng, Chen, Zhou, & Luo, 2014; VanRullen, Carlson, & 

Cavanagh, 2007). An early behavioral study that demonstrated a theta-band attentional 

rhythmicity was conducted by VanRullen and colleagues (2007). They measured human 

psychometric functions for target detection as a function of target duration at various set sizes, 

when fitting different models of attention deployment to the data, they concluded that ongoing 

rhythmic attention process serially sampled targets at a rate of 7 per second, and this rhythmic 

manner persisted even when only one item was attended. Later studies using a spatial cueing 

task in combination with more direct spectral analysis measures on both human subjects 

(Fiebelkorn, Saalmann, & Kastner, 2013) and monkeys (Fiebelkorn, Pinsk, & Kastner, 2018) 

demonstrated that spatial attention is associated with theta-rhythmic fluctuations in hit rates at 
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the attended location. Thus, it seems that theta-rhythmic sampling is a fundamental property of 

spatial attention.   

Fiebelkorn, Pinsk, and Kastner (2018) further investigated the neural basis of these 

internally generated rhythms. They recorded local field potentials from two key regions of the 

macaque frontoparietal network: the frontal eye field (FEF) and the lateral intraparietal area 

(LIP). Their results indicated that the theta phase in the frontoparietal network shapes behavioral 

performance through temporally coordinating two rhythmically alternating states: the “good” and 

“poor” theta phase, which were determined by whether the behavioral performance was enhanced 

or attenuated at the cued location. When the target occurred during the “good” theta phase, in the 

FEF, detection accuracy was modulated by beta-band oscillations (16-35 Hz), and in the LIP, a 

similar periodic modulation of behavior included beta as well as gamma band oscillations (30-40 

Hz). However, when target appeared at the “poor” theta phase, only alpha-band (9-15 Hz) LIP 

oscillations modulated behavioral performance. Altogether, these results suggested that there is 

rhythmic sampling during spatial attention and it might be linked to dynamic interplays between 

hubs of the frontoparietal network.  

Not surprisingly, several studies also suggested that mental representations, which are 

conventionally considered stable and invariant during WM delay, are actually rhythmic and 

transient. For example, in a MEG study, Fuentemilla and colleagues (2010) trained a multivariate 

pattern classifier during the presentation of indoor or outdoor image. When testing the classifier 

during the delay period of a working memory task, they observed that decodable representations 

of memorized images recurred at a theta rhythm. Such periodic refreshing of internal 

representations could potentially serve as the neural correlate of conscious rehearsal 

(Trubutschek et al., 2017). A similar rhythmic pattern of mental representation was also found in 
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our recent behavioral study of WM (Liu, Liu, & Ravizza, 2018, under review). In that study, we 

sampled behavioral performance densely in time using a delayed-estimation WM task. In the 

experiment, participants memorized orientations of two Gabor patches followed by a retro-cue 

with different probabilities (i.e., 100%, and 50%) indicating the likelihood that a particular 

orientation would have to be recalled (Figure 5). Memory performance was densely sampled by 

systematically varying the delay interval between the retro-cue and the probe stimulus. We 

observed rhythmic patterns mainly in the theta band in the time course of memory recall with 

both probabilistic retro-cues. These findings indicated that there are worse and better moments 

during working memory maintenance. Just like results reported in attention studies (Fiebelkorn, 

Pinsk, & Kastner, 2018), if the target item appeared during a ‘good’ phase, it is more likely to be 

precisely recalled. Otherwise, memory precision for the target item in a ‘bad’ phase might be 

degraded.  

A similar finding was revealed by Peters, Rahm, Kaiser, and Bledowski (2018). Unlike in 

our study, the authors were mainly interested in whether object-based attention fluctuated during 

WM maintenance. In their task, participants were required to memorize four positions located at 

the endpoints of two objects. During the retention interval, a cue appeared to indicate the 

position that would most likely to be probed in a delayed match-to-sample decision. The cue was 

75% valid, in the remaining 25% of the trials, either the uncued memory position that was 

located on the same object or on the different object adjacent to the cued position would be 

probed. They calculated the reaction time difference for correct responses between the same-

object position and different-object position conditions as an indicator of object-based attention. 

By varying the cue-to-probe intervals, they also found the time course of object-based attention 

in WM oscillated in the theta range at 6 Hz.  
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Oscillatory dynamics might also support the activity-silent encoding of task-relevant 

contexts and rules (Helfrich & Knight, 2016). For example, gamma frequency might be required 

for driving synaptic plasticity (Harris, Csicsvari, Hirase, Dragoi, & Buzsaki, 2003; Miller, 

Lundqvist, & Bastos, 2018; Munk, 2016) which is considered as the neurobiological substrate of 

the hidden state. Beta power can disinhibit the recurrent excitation of neurons to keep gamma 

bursting at a lower level in the delay interval to prevent working memories from prematurely 

acquiring control of behavior. During working memory readout, beta allows the gamma bursting 

to increase so that working memories can acquire that control (Miller, Lundqvist, & Bastos, 

2018). As indicated by the activity-silent model, focus of attention functions as the medium 

between hidden and active states. Alpha frequency has been suggested to reflect the orienting of 

attention (Wolff, Jochim, Akyurek, & Stokes, 2017), in this way, periodic modulation of 

neuronal activity could possibly function as a selection process to mediate attention which 

includes directing relevant information into the active state and irrelevant information into the 

hidden state.  

Taken together, in this section, I reviewed evidence to support the notion that both neural 

and functional architecture of working memory is not persistent but rhythmic. Neuronal 

oscillation might be a general neural coding mechanism which plays critical role in working 

memory maintenance and various cognitive functions, such as perception (Spaak, de Lange, & 

Jensen, 2014; VanRullen, 2016), attention (VanRullen, 2018) and decision making (Wyart, De 

Gardelle, Scholl, & Summerfield, 2012). This oscillatory neural pattern is expected to manifest 

itself at the behavioral level if it really exists and has an effect on behavior. Here, evidence has 

been reviewed to support this assumption. Furthermore, coordinated neuronal activity in distinct 

frequencies might help to keep WM information online.   
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Reconciling persistent and dynamic coding of working memory  

In the previous sections, two seemingly contradictory frameworks of WM maintenance 

were reviewed: one claims that WM maintenance needs persistent and above-baseline neural 

activity, and the other claims that sustained activity is not necessary, but instead, memory item 

can be stored in an active-silent state and modulated by rhythmic neural activities. Clearly, the 

dynamic framework has some advantages over the persistent activity model. It is metabolically 

more economic without persistent spiking, and provides a better explanation for the limitations 

of working memory capacity via the theta-gamma cross-frequency coupling mechanism. 

This present work is not suggesting that classic model of persistent spiking is wrong, 

instead, it is trying to argue persistent spiking is just part of the mechanisms WM maintenance 

processes rely on. It is more likely both persistent activity and other complementary mechanisms 

work together to support WM information. For example, while short-term synaptic plasticity can 

support memory maintenance, persistent neuronal activity might play crucial role in 

manipulating information, and tasks requiring greater manipulation required greater levels of 

persistent activity (Masse, Yang, Song, Wang, & Freedman, 2018). The negative finding of 

persistent activity in the PFC might also be attributed to the topographical differences in neural 

activities in the subdivisions of PFC. For example, it has been suggested that neurons with 

persistent firing to visual features, such as faces, are more ventrally than those with persistent 

activity to visual space, and those with persistent firing to somatosensory information are even 

more ventrally in the inferior prefrontal convexity (Constantinidis et al., 2018).  

A newly proposed model tried to unite persistent activity with activity-silent synaptic 

traces in WM (Manohar, Zokaei, Fallon, Vogels, & Husain, 2017). This model suggested that 
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persistent activation serves as the focus of attention that encodes recent activity patterns. 

However, previously attended items are preserved in activity-silent synaptic traces. They are in a 

non-privileged state but can be reactivated by partial information.  

Furthermore, this model proposed two distinct types of neural representation to account 

for the focus of attention: fixed feature neurons, and freely-conjunctive neurons. Fixed feature 

neurons can be observed in posterior cortical areas, and have fixed receptive fields or tuning 

curves. In contrast, freely-conjunctive neurons are located in PFC, and do not represent a fixed 

feature or item in memory, but, they are able to rapidly increase or decrease their synaptic 

connectivity with patterns of fixed feature neurons. When a stimulus is perceived, conjunctive 

neurons become active in response to the combination of active features, such as color, 

orientation, and location. Once a conjunctive unit succeeds in activating feature units, attention is 

focused on the activated features and binds features into a perceptual object. This mutual 

excitation between feature and conjunction neurons keep the combination of features persistently 

active, even when the stimulus is no longer present.  

When a new stimulus arrives, a new pattern of sensory input could destabilize internal 

activity, and thus, conjunctive neurons activate again and trigger a shift of attention towards the 

newly activated features. Importantly, synapses between the previous objects’ features and the 

particular conjunctive unit remained strengthened during this process even though neurons 

become silent. That is, previously attended items can remain in the background, encoded in 

activity-silent synaptic traces. Because of this mechanism, presenting any one feature of a 

previously attended object (e.g., color, spatial location) as a cue will reactivate the corresponding 

conjunction neurons, and also other features that were associated with the object, which again 

brings the object back to an attended state supported by persistent activity. This dual functional 
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architecture can explain a wide range of behavioral and neurophysiological data in attention and 

memory which have been difficult to explain in single persistent activity framework (Manohar, 

Zokaei, Fallon, Vogels, & Husain, 2017).  

 

Conclusions and future directions 

Different levels of neural evidence in this review were provided to support distinct claims 

of different models. However, the connections between these levels (i.e., individual neurons, 

LFP, neuroimaging, and behavior) are still poorly understood. For example, in the oscillatory 

models, a wealth of EEG/MEG recordings reported oscillatory components in active WM 

maintenance using varied tasks. However, how EEG/MEG oscillations interact with measured 

dynamics in the LFPs or dynamic mental representations revealed in behavioral studies is largely 

unknown. This question can only be answered if one has a ‘multiscale dataset’ (Cohen, 2018), 

meaning simultaneously recorded neural spikings, LFPs, and EEG/MEG activities. We could get 

a better sense of WM maintenance mechanism if we could identify the one-to-one mapping 

between different recording techniques and behavioral measures.  

In addition to the multiscale dataset, it is also essential to use appropriate analytic 

techniques to process these datasets. In previous paragraphs, I have emphasized the necessity of 

using single-trial analyses to evaluate whether the WM-related activity is persistent or sparse at 

the neuron level. Similar false notions about sustained activity can also be made when averaging 

brain rhythms acquired from EEG/MEG signals in the spectral domain. When frequency analysis 

is applied to a time series signal, the power representation of the signal calculated with typical 

time-frequency analyses is purely non-negative. Thus, when averaging across trials in the 
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spectral domain, transient bouts of positive spectral power cannot be canceled out, which results 

in prolonged rhythms in duration (Jones, 2016).  

A standard procedure in the study of neural rhythms is to band-pass filter the temporal 

domain signal into the frequency of interest. This band-pass technique usually uses a sinusoidal-

like filter, which forces a sinusoidal shaped waveform of varying amplitude onto the signal. This 

type of analysis can make non-sinusoidal signal produce peaks in power spectra at the same 

frequency and power as a sinusoidal signal, even though the neural mechanism underlying non-

sinusoidal signal might be fundamentally different. It has been suggested that non-sinusoidal 

oscillations can lead to misleading phase-amplitude coupling results and phase-phase coupling 

estimates (Cole & Voytek, 2018). Thus, it is necessary to develop methods to account for non-

sinusoidal waveforms when performing spectral analysis.  

Lastly, the ODR task and its variants have been very successful in probing the nature of 

WM maintenance. However, these classical tasks were still too simple. To know more about 

WM, we have to add more elements to our experiments. Potential candidates include requiring 

subjects to remember more items, introducing distractors during the delay, and varying retro-cue 

probability, etc. For example, as we know from the previous discussion, the focus of attention 

can be biased by retro-cues, and this retro-cue paradigm has contributed a lot in unveiling the 

mechanism of the activity-silent model. Most of the relevant studies to date used informative cue 

(i.e., 100% valid) to shift the focus of attention in WM. However, it is less clear how retro-cues 

with other reliabilities modulate the focus of attention. Would uncued items still be put into the 

hidden state with highly reliable but not 100% valid cue? To tackle the complexity of WM in the 

real world, more complex WM tasks are needed (Lundqvist, Herman, & Miller, 2018). 
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To sum up, several lines of evidence have been given to support competing models in this 

review: the dominant persistent activity as the neural correlate of WM, and its alternative models, 

including the activity-silent model which depends on synaptic mechanisms and oscillatory 

models which convey information based on the phase and frequency of discharges without 

relying on persistent spiking activity. The arguments against the persistent model pointed out that 

persistent activity can be highly variable during the course of a trial, but the averaging methods 

used in earlier studies obscured this dynamics of neural activity. Thus, it is best to use single 

trials from simultaneously recorded neurons rather than using trial-averaged data when directly 

evaluating both the persistent activity and dynamic coding models.  

On the other hand, recent studies that indicated that WM information can still be stored 

without being in an active state have questioned the necessity of sustained spiking in keep 

information online. Furthermore, a large body of evidence suggested that instead of relying on 

persistent activity, it seems dynamic coding is a more generic mechanism that the brain adopts to 

maintain working memory information.  
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Figure 1.  (A) Sequence of events in the Oculomotor Delayed Response task. Subjects are presented with a brief 

stimulus, and after a delay period, they need to saccade toward the remembered stimulus location. (B) Delayed 

Match-to-Sample task. Monkeys were firstly presented with a cue stimulus followed by a random number (0-2) of 

non-match stimuli, separated by delay periods. When a match stimulus appears at the same location as the cue, the 

monkeys are required to release the lever. (C) Match/Non-match task. Two stimuli are presented in sequence, 

separated by delay periods. After another delay period, two choice targets (green and blue) are shown. If the second 

stimulus matched the first stimulus, monkey had to saccade to the green target, otherwise, saccade to the blue target. 

In the last two tasks, the persistent activity elicited by the stimulus should not be confounded with motor preparation 

activity, since the response is not known until later in the trial. (D) A schematic diagram of sustained activity in the 

PFC during the delay periods (in the yellow area) of the previous tasks. Adapted from Riley and Constantinidis 

(2016). 
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Figure 2. An illustration of trial-average results. The upper panel showed gamma bouts in the prefrontal cortex 

during individual trials of working memory maintenance. The bottom panel showed a sustained gamma response 

after averaging single-trial results. Adapted from Stokes and Spaak (2016). 
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Figure 3. Schematic of layered neural states. The neural state comprises the activity state which is usually 

maintained with persistent activity and can be measured in typical experiments. The activity-silent state is 

considered as an unseen structure, which changes in effective connectivity (e.g. short-term synaptic plasticity). 

Though this kind of state is ‘activity-silent’, it can still influence subsequent processing. The information contained 

in this state can be probed using an impulse of activity to drive the network. Adapted from Stokes (2015). 
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Figure 4. Theta-gamma phase-amplitude coupling scheme. Different memory items (represented as A, B, C, and D) 

are represented by different groups of active cells. Each gamma cycle encodes a single item, and multiple gamma 

cycles are nested into the theta rhythm by phase-amplitude cross-frequency coupling, thus, if multiple items are 

being held, the entire pattern repeats on theta cycles. Adapted from Turi, Alekseichuk, and Paulus (2018). 
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Figure 5. Left panel showed schematic of experimental design in Liu, Liu and Ravizza (in review). (A) Participants 

were asked to memorize the orientations of two gratings followed by a retro-cue in the form of a circle. After a 

varying interval from 0.3s to 1.5s, a probe grating occurred either at the cued or uncued position. Participants were 

required to recall the orientation of the target at the corresponding position by rotating the probe grating with a 

mouse to match the target orientation in their memory.  (B) Retro-cue conditions and corresponding probe positions 

were listed.  Right panel showed the time course and spectral result of each cue condition. (C) Group averaged recall 

performances as a function of temporal interval between the retro-cue and the probe. Raw time courses were 

overlaid on the 95% confidence interval bands. (D) Average spectrum for each cue condition (solid lines) was 

overlaid on its 95% confidence interval band. Dotted lines indicated the average permuted spectral amplitudes for 

each condition. Asterisks indicated the significant peak frequencies (p < 0.05). Adapted from Liu, Liu, and 

Ravizza (in review). 
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